纪录片《鹤舞长江》剧照。中央广播电视总台供图
2022年12月20日,白鹤滩水电站16台百万千瓦机组全部投产发电。白鹤滩与乌东德、溪洛渡、向家坝、三峡、葛洲坝水电站“串珠成链”,点亮了世界最大的清洁能源走廊,在新征程上为践行“两山”理念、落实“双碳”目标注入澎湃的绿色动能。纪录片《鹤舞长江》,全景式呈现了这项超级工程的诞生背景、建设历程,引领观众深度感受“绿色奇迹”背后的中国智慧、中国精神、中国力量。
世界首台百万千瓦水轮机组、世界最大的地下厂房、世界最“聪明”的智能大坝……白鹤滩水电站攻克了40项世界级难题,取得1000余项技术专利,机组实现100%国产化。这是我国水电装备制造从“跟跑”“并跑”到“领跑”的又一杰作。核心技术的突破,是攀登,也是接力。水电站历经半个多世纪选址、10年勘察设计、10余年建设施工,承载着几代水电人的光荣与梦想。《鹤舞长江》以选址筹建为开篇,用真实的镜头捕捉一个个闯关夺隘的动人故事,留下了弥足珍贵的影像资料和历史信息。
作为专业性极强的工程题材纪录片,如何用影像语言艺术地挖掘和呈现工程价值,让广大观众在震撼之余,激发起更多情感共鸣?该片做了诸多有益尝试。
以生动贴切的语言,呈现科技之美。一个超级工程,就是一件精美绝伦的工业艺术品,凝结着工程师们非凡的想象力与创造力。以一个铁球“借力打力”,实现上层爆破的同时,保护底部基岩;通过“雕刻师”级别的精准爆破,岩壁吊车梁一次成型,为庞大的地下宫殿打造出能承担万吨重量的坚实“臂膀”;以低热水泥破解“无坝不裂”的难题,成功筑成“无缝大坝”;为泄洪洞岩壁敷上一层光滑的“镜面”,阻断空泡效应,让“深水炸弹”无处栖身;以充满传统文化意蕴的“双龙戏水”出水口设计,巧妙消解泄洪势能……纪录片将科技术语转化为日常语言,以通俗易懂的表达诠释复杂问题,打破专业隔阂,赋予硬核科技以浪漫诗意。
以平凡动人的故事,书写奋斗之路。令观众印象深刻的,不仅是那座雄伟壮观、造型优美的大坝,更有数万名建设者和10万移民的无私奉献。前期负责勘探的工程师们冒着生命危险,徒步于垂直落差近千米、最窄处不足1米的白鹤驿道;河谷上空的7座彩色缆机中,清一色的女司机昼夜不停,以女性的细致与专注,累计吊送100万罐混凝土;移民工作者刘祖雄不顾病痛,翻山越岭,开展详尽的入户调查、制定安置方案,努力带领库区移民走出世代贫困……纪录片以工程建设为主题,但关键视角始终是人。工程建设过程中,朴实的奉献和真切的情谊,令纪录片充满温度和力量。
纪录片专门辟出章节,呈现工程配备的一整套完善的生态系统保护方案。乌东德水电站为洄游的鱼类量身打造“专用电梯”,白鹤滩水电站为两岸崖壁上的鸟儿栗喉蜂虎“乔迁新居”、为300余株古树逐个定制移栽方案……从江中到岸边,“生态优先、绿色发展”的理念落地生根、拔节生长。
在纪录片的最后一集,镜头离开白鹤滩,像坝中流泄的江水一般涌向长江、奔入大海。随着镜头,观众看到了沿线各地正在建设或运行的水面光伏、抽水蓄能电站、远海风电等多能互补的清洁能源体系。这是实现中华民族永续发展的不竭动力,也是我们饱含诚意、努力实现“双碳”目标的一个剪影。(周飞亚)
中国科学家构建出新型人工碳晶体******
中新社合肥1月12日电 (记者 吴兰)中国科学家在新型碳基晶体研究方面取得重要进展——构建出新型人工碳晶体,并实现了其克量级制备。1月12日,国际学术期刊《自然》(Nature)刊发了这一研究成果。
中国科学技术大学朱彦武教授研究团队通过对富勒烯碳60分子晶体进行电荷注入,在常压条件下构建了碳60聚合物晶体以及长程有序多孔碳晶体。
朱彦武介绍:“这里的长程有序多孔碳晶体,微观上具有多孔特征但完整保留了晶体的宏观周期性,是一类新的人工碳晶体,未来可能在能量存储、离子筛分、负载催化等领域具有潜在应用。电荷注入技术为构建这类碳基晶体材料提供了一种拼‘乐高’式的制备技术,有望成为在原子级精度上调控晶体结构的新手段。”
碳是自然界最常见的元素之一,碳原子之间通过不同排列方式,能够形成多种结构,比如石墨、金刚石和无定型碳,已经广泛应用于各领域。近年来,富勒烯、纳米碳管、石墨烯和石墨炔等新型碳材料的发现和发展,引起了广泛关注与研究热潮。
“如果我们可以在一个晶体结构中引入纳米单元,例如用富勒烯、石墨烯等作为基本结构单元代替普通晶体中的原子,像搭积木一样‘搭建’出新型碳材料,可能会发掘更多新奇性质,发挥更大应用潜力。”朱彦武说。
此前,对于制备这类新型碳材料,研究人员要么是利用高温高压等极限条件,要么是采用紫外光、电子束辐照等微观处理技术,但其产率较低、产物不纯,阻碍了人们对该类材料的性质与应用进行更深入探索。
朱彦武团队长期致力于发展新型碳材料的规模化制备技术,早在2011年,就找到了一种化学“活化”的方式“激活”石墨烯。此后,团队进一步探索了“活化”方法的普适性。
在此次研究中,朱彦武团队创造性地使用氮化锂对富勒烯碳60分子晶体进行电荷注入,并在温和温度下进行热处理,最终得到大量的碳60聚合物晶体以及长程有序多孔碳晶体。
朱彦武表示:“接下来,我们将系统地研究长程有序多孔碳基晶体的性质,期望通过精细调节实验参数进一步调控晶体的原子级结构特征,探索更多的性质和应用。”(完)
(文图:赵筱尘 巫邓炎)